Wind Power Converter Fault Diagnosis Using Reduced Kernel PCA-Based BiLSTM

نویسندگان

چکیده

In this paper, we present a novel and effective fault detection diagnosis (FDD) method for wind energy converter (WEC) system with nominal power of 15 KW, which is designed to significantly reduce the complexity computation time possibly increase accuracy diagnosis. This strategy involves three significant steps: first, size reduction procedure applied training dataset, uses hierarchical K-means clustering Euclidean distance schemes; second, both reduced datasets are utilized by KPCA technique extract select most sensitive features; finally, in order distinguish between diverse WEC operating modes, selected features used train bidirectional long-short-term memory classifier (BiLSTM). study, various scenarios (short-circuit (SC) faults open-circuit (OC) faults) were injected, each scenario comprised different cases (simple, multiple, mixed on sides locations (generator-side grid-side converter) ensure comprehensive global evaluation. The obtained results show that proposed FDD via dataset methods not only improves but also provides an efficient storage space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Fault Diagnosis of Power Transformers using Kernel based Extreme Learning Machine with Particle Swarm Optimization

To improve the fault diagnosis accuracy for power transformers, this paper presents a kernel based extreme learning machine (KELM) with particle swarm optimization (PSO). The parameters of KELM are optimized by using PSO, and then the optimized KELM is implemented for fault classification of power transformers. To verify its effectiveness, the proposed method was tested on nine benchmark classi...

متن کامل

Fault Diagnosis and Fault-Tolerant SVPWM Technique of Six-phase Converter under Open-Switch Fault

In this paper, a new open-switch fault diagnosis method is proposed for the six-phase AC-DC converter based on the difference between the phase current and the corresponding reference using an adaptive threshold. The open-switch faults are detected without any additional equipment and complicated calculations, since the proposed fault detection method is integrated with the controller required ...

متن کامل

Novel Fault Diagnosis Method for Wind Power System

This paper proposes a novel approach based on the chaos eye method (CEM) and extension neural network (ENN) for fault diagnosis of wind power systems. First, we used sensors to capture the vibration signals of the wind power system to detect subtle changes. Subsequently, the chaotic synchronization detection method was used to form a chaos error distribution diagram. The distribution diagram ce...

متن کامل

Fault Detection of Nonlinear Processes Using Fuzzy C - means - based Kernel PCA

Nonlinearity in industrial processes such as chemical and biological processes is still a significant problem. Kernel principal component analysis (KPCA) has recently proven to be a powerful tool for monitoring nonlinear processes with numerous mutually correlated measured variables. One of the drawbacks of original KPCA is that computation time increases with the number of samples. In this art...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2023

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su15043191